

Recent development of deep geothermal energy in The Netherlands

Guus Willemsen IF Technology Hannover, October 16, 2014

Basic geology factors & setting

Sandstone aquifers with primary permeability 1 to 3 km deep

Production volumes of 100 to $400 \text{ m}^3/\text{h}$ (30 to 100 l/s)

Temperature gradient : 30 °C / km

Dutch settings roughly comparable to France, Northern Germany, Denmark

Conditions allow 'Direct Use' application of geothermal energy

Temperature gradient in The Netherlands

Engineering the earth

Primary energy consumption 3.200 PJ/year

Greenhouses (129 PJ) Offices etc (215 PJ) Houses (327 PJ) Industry (619 PJ)

Dutch government foresees significant contribution of geothermal energy to renewable heat

Source: Nationaal actieplan voor energie uit hernieuwbare bronnen (agentschap NL, 2010)

Data on the Dutch subsurface

Available from NLOG.NL

Public after 5 years

Potential for geothermal energy in The Netherlands

From: Thermogis, Expectation P50, TNO

1980 – 2000 Various unsuccessful attempts 2005 First new feasibility studies 2007 Bleiswijk 1.600 meter 2009 Guarantee scheme 2011 Geothermal Action Plan (11 PJ in 2020) 2012 SDE+ (Feed-In Tariff scheme) 2013 Capacity restrictions in FIT scheme

De Lier drilling (KCA Deutag)

Permit applications in NL in 2014

exploration licences

Geothermal energy production

11 projects realized10 of them in greenhouses2007: first project realized (!)

Succes factors

- Public database (www.nlog.nl)
- FIT for geothermal heat (SDE+)
- National Risk Mitigation Fund for mitigating geological risk
- High heat demand density (in GJ/ha) with low T @ greenhouses (return < 35 C)

Yes, there are problems, but problems can be solved

- Drilling problems well and drilling design, contingency plans, risk budget
- Low flow contingency plans & Dutch Risk Mitigation Fund
- Injectivity & skin- mud selection, underbalanced drilling, clean out, hydraulic stimulation
- Scaling & corrosion assess probability before drilling, water treatment as option in design
- Seismicity design for low risk & monitor

Future outlook

- Greenhouse geothermal market development slows down lack of money – role for geothermal operators
- Professionalization: industry standards are being developed
- New heat demand markets:
 - District heating (existing & new)
 - Industry (food, paper, chemical)
- New technology developments
 - Heat pumps to T > 100 C

- Fault zones & karst in deep seated aquifers
- o EGS
- Electricity from low temperature heat (Climeon)

Engineering the earth

Thank you

